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Abstract. I have calculated the ground-state energy of an electron which is trapped at the 
intersection of a cross formed by two quantum wires. The widths of the wires forming the 
cross are assumed to vary independently. When the widths are equal, a bound state with 
energy below theenergycontinuumexists. Theenergycorresponds to thevalueobtained by 
Schultefd. When the ratioofthe two widthsisvaried. theenergychanges.Thevariationin 
the energy with the ratio of the widths is obtained and is shown graphically. It is observed 
that the energy decreases asone of the widths is allowed to increase. Numerical calculation 
indicates that the binding energy approaches zero asymptotically and the bound electronic 
state merges with the energy continuum. I have also calculated the energy of an electron 
trapped by a double cross. There are two bound states of the electron corresponding 
to symmetric and antisymmetric configurations. The energy of these states is calculated 
numerically. The possibility that the electron oscillates between the centres of the double 
cross is discussed and the frequency of oscillations is estimated 

1. Introduction 

With advances in fine-line Lithography, it is possible to construct and study quantum 
effects in semiconductors which simulate the properties of wires with extremely small 
widths. In  these structures, the state of the electron in the direction perpendicular to the 
length of the wire is quantized with sufficiently large separations in energy levels and the 
motion of the electron parallel to the length is that of a quasi-free electron. The present- 
day technology is capable of producing wires with widths as small as 50 nm. Calculation 
of energy states of the electron in systems formed by the quantum wires has received 
much attention in literature [l-51 in view of their technological applications. When a 
cross formed by two quantum wires intersecting at right angles isconstructed, the energy 
levelsof theelectron form an energy continuum with the minimumenergy corresponding 
to the lowest energy of the quantized level in the transverse direction, but in addition to 
the energy continuum a bound state of the electron also exists near the intersection of 
the twowires. The bound-state wavefunctionof theelectronislarge near theiutersection 
and decreases away from it. The difference between the energy of this localized state 
and the energy continuum is the binding energy of the state. The binding energy of this 
state has been obtained recently by Schult er a1 [ 5 ] ,  assuming that the widths of the wires 
forming the cross are equal. In this paper we consider that the widths are not necessarily 
equal and that they can be varied independently. The evaluation of energy in such 
situations is relevant since the differences between the two widths are likely to be more 
frequent in experimental situations than in situations when they are equal. We have also 
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considered for the first time the possibility of a bound state trapped by a double cross in 
which a quantum wire is intersected at right angles by two other quantum wires. In this 
case the electron state can be described by wavefunctions which are symmetric and 
antisymmetric with respect to the two cross centres. The energies of these two states 
are close to each other but not equal unless the separation is approaching infinity. 
Combinations of the symmetric and antisymmetric wavefunctions can be formed by 
taking the sum of and the difference between them, giving rise to two non-stationary 
states which have the property that in these states the electron is localized near one 
centre or the other and is expected to oscillate between the two centres. We have 
calculated the energies of the symmetric and antisymmetric states as a function of the 
separation between the two crosses. The frequency of the electron oscillating between 
the centres is estimated. 

2. Procedure 

A numerical procedure useful for the evaluation of the energy of the electron in quantum 
wire systems has recently been proposed by Press er a1 [6]. Although other methods 
exist, the method given by these workers is particularly simple and as a numerical 
procedure very interesting. The elements of this method which were described earlier 
by Schult ef a1 [5] are given in the following. 

In the time-dependent Schrodinger equation, if we replace the time variable r by a 
pseudo-time r such that r = ir, then the equation takes the form 

(a/at)v(x, Y ,  T) = (a/ax2 + a/av2)y(x, Y, r )  (1) 

where X = 2mxz/h and Y = 2my2/ft. If the eigenvalues and the eigenfunctions of the 
Laplacian are given by -k: and u., respectively, then any arbitrary wavefunction 
Y ( X ,  Y ,  r )  can be expressed by 

Y(X, Y ,  r )  = Zu.u,(X, Y )  exp( -k:z)  (2) 

where k: is positive and a, is the expansion coefficient. As r increases, the exponential 
terms decrease but the term containing k, corresponding to the ground-state energy 
would be the slowest to decrease provided that a,is not zero. Thus, for sufficiently large 
T, Y(X, Y, r )  would approach the unnormalized ground-state wavefunction. Thus the 
procedure allows us to filter out the ground-state wavefunction from any arbitrary 
wavefunction so long as it is not orthogonal to the ground state. The ground-state energy 
can be obtained using the time-independent Schrodinger equation. 

1 apply the procedure for obtaining the ground-state wavefunction and its energy. 
For the cross geometry, I assume that the potential inside the quantum wires is zero and 
infinite outside. The electron is thus constrained to the insides of the wires. The cross 
wires are divided into a mesh of uniformly distributed points and an arbitrary wave- 
function is defined over these points. If a bound state is expected, then it is natural to 
choose the arbitrary wavefunction such that it is large near the centre and is decreasing 
away from it, Theevolutionofthewavefunction inpseudo-time r isobtainednumerically 
by discretizing the pseudo-time over small intervals and using equation (1). The same 
procedure is also employed to obtain the energy of the electron attached to a double 
cross. The results of the numerical calculations are described in the following section. 
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3. Results 

3.1. Bound state in a cross geomehy 

First we consider a cross formed by two quantum wires. The width of one wire is Wand 
of the other W’. I assume that W’ is a variable and is equal to or greater than W so that 
the ratio W/W is unity or greater than unity. The energy is evaluated using the method 
of Press et aZ[6]. The ground-state energy E is expressed in units of EItd = fizn2/2mW2. 
When W’/W is unity, the bound-state energy of the electron is given by E/Estd = 0.688, 
a value which is in reasonable agreement with the result of Shultz etal[S]. When W’/W 
is allowed to vary, E/ESld decreases and is shown graphically in figure 1. Also shown in 
the figure is the edge of the energy continuum. The bound-state energy is defined as the 
difference between the energy E and the energy continuum. It is observed that the 
binding energy of the electron decreases from its value when W‘/W is unity as the ratio 
of the widths W’/Wis increased. For W‘lWequal to about 1.75, E/Esd approaches the 
energy continuum. For values of W’/W greater than 1.75 the difference between E/EScd 
and the energy continuum is finite but is so small that it cannot be distinguished on the 
energy scale used in the figure. As expected, for values of WlWgreater than about 1.75 
the spread of the wavefunction in the broader channel away from the centre of the cross 
is significant. Numerical evaluation in these situations is increasingly lengthy but, by 
repeated checking of the results, I conclude that the energy of the electron does merge 
asymptotically with the energy continuum and that the binding energy of the electron 
approaches zero as the ratio of the widths are increased. The spread of the wavefunction 
in the narrower channel away from the centre decreases as the ratio of the widths is 
increased. 

3.2. Bound states in a double cross 
I assume that the widths of all the wires forming the double cross are the same and this 
width is denoted by W. The distance separating the two centres of the double cross is 
given by W’. The ratio W‘/W is therefore greater than unity. In this geometry, two 
energy states are possible and they are obtained by choosing the trial wavefunction 
which is symmetric and antisymmetric with respect to the centres of the crosses. When 
the pseudo-time t is allowed to increase, the electronic energies approach the minimum 
energies appropriate to their symmetries. We express these energies in units of Estd as a 
function of the ratio W‘/W. 

I denote the symmetric state by Y, and the antisymmetric state by Y, and their 
energies by E, and E,, respectively. Two non-stationary states YL and YYR are obtained 
by combining Y, and Ya according to 

and 

Here Y, is centred around the left-hand side and Y, is centred around the right-hand 
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Figure I. The continuous curve gives the variation 
in the energy of the electron in units of E , ,  as a 
function of the ratio of the widths W'IW, for the 
cmss geometry: ---, variation in the edge of the 
energy continuum. 

Fignre2.The upper curve shows the energy of the 
electron in the antisymmetric state and the lower 
curvegivesthevariationintheenergyinthesym 
metric stale in units of E,,, as a function of the 
separation between the centres of the crosses in 
the doublecross geometry. 

side of the double cross. If the electron is centred on the left-hand side of the double 
cross at time f = 0, then the time variation of the wavefunction is given by 

Y(f) = (1)'/2[Yrexp(-iE,r/fi) + Y,exp(-iEat/fL)l 

Y(f) = (h)1/2 exp(-iEsr/fi){Y, + Yaexp[-i(E, - E&%]]. 

( 5 )  

(6) 

that is 

At time f = 0, Y(t) is equal to YL as required and, at time f = m%/(E, - E$), Y(f) 
becomes YR. As the time progresses, the electron oscillates between the centres of the 
double cross. The frequency v of the oscillations is given by 

v = IE, - E,\/%&. (7) 
In figure 2, I have shown the variation in E, and E, as a function of the ratio W / W .  The 
absolute difference 2 = I &  - Esl/E3td, obtained from figure 2 varies from about zero 
when the separation between the centres is large to about 0.164 when the separation is 
the smallest. If the electron mass is taken to be the same as in free space and W = 75 nm, 
the value for v is given by 

v = 1.52 X lO+''s-'. (8) 
The value of Y can change from the above estimate if the width W is altered or the mass 
of the electron is different from its free-space value. 

4. Conclusions 

Energies of bound electronic states are obtained numerically for a single cross formed 
by two quantum wires with unequal widths, and for a double cross. In the case of a single 
cross it is found that, as the ratio of the widths is changed, the energy of the bound state 
decreases. For the double cross, two states are found corresponding to symmetric and 
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antisymmetricconfigurationswithrespecttothecentresofthe doublecross.Theenergies 
of these states are obtained. The possibility that the electron oscillates between the two 
centres is proposed, and the value of the frequency of oscillations is estimated. 
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